Enumeration: How the Host Learns about Devices

4

Enumeration:
How the Host Learns
about Devices

Before applications can communicate with a device, the host needs to learn
about the device and assign a device driver. Enumeration is the exchange of
information that accomplishes these tasks. The process includes assigning an
address to the device, reading descriptors from the device, assigning and
loading a device driver, and selecting a configuration that specifies the
device’s power requirements, endpoints, and other features. The device is
then ready to transfer data using any of the endpoints in its configuration.

This chapter describes the enumeration process, including the structure of
the descriptors that the host reads from the device during enumeration. You
don’t need to know every detail about enumeration in order to design a USB
peripheral, but understanding how enumeration works in general is essential

USB Complete 85

Chapter 4

in creating the descriptors that will reside in the device and in writing firm-
ware that responds to enumeration requests.

The Process

86

One of the duties of a hub is to detect the attachment and removal of
devices. Each hub has an interrupt IN endpoint for reporting these events to
the host. On system boot-up, the host polls its root hub to learn if any
devices are attached, including additional hubs and devices attached to those
hubs. After boot-up, the host continues to poll periodically to learn of any
newly attached or removed devices.

On learning of a new device, the host sends a series of requests to the
device’s hub, causing the hub to establish a communications path between
the host and the device. The host then attempts to enumerate the device by
sending control transfers containing standard USB requests to the device’s
Endpoint 0. All USB devices must support control transfers, the standard
requests, and Endpoint 0. For a successful enumeration, the device must
respond to each request by returning requested information and taking
other requested actions.

From the user’s perspective, enumeration is invisible and automatic except
for possibly a message that announces the detection of a new device and
whether the attempt to configure it succeeded. Sometimes on first use, the
user needs to assist in selecting a driver or specifying where the host should
look for driver files.

When enumeration is complete, Windows adds the new device to the
Device Manager’s display in the Control Panel. When a user removes a
device from the bus, Windows removes the device from the Device Man-
ager.

In a typical device, firmware contains the information the host will request,
and a combination of hardware and firmware decodes and responds to
requests for the information. Some controllers can manage the enumeration
entirely in hardware, with no firmware support. On the host side, under

USB Complete

Enumeration: How the Host Learns about Devices

Windows there’s no need to write code for enumerating because the operat-
ing system handles the process.

Enumeration Steps

The USB specification defines six device states. During enumeration, a
device moves through four of the states: Powered, Default, Address, and
Configured. (The other states are Attached and Suspend.) In each state, the
device has defined capabilities and behavior.

The steps below are a #ypical sequence of events that occurs during enumera-
tion under Windows. But device firmware must not assume that the enumer-
ation requests and events will occur in a particular order. To function
successfully, a device must detect and respond to any control request or
other bus event at any time.

1. The user attaches a device to a USB port. Or the system powers up
with a device already attached. The port may be on the root hub at the host
or a hub that connects downstream from the host. The hub provides power
to the port, and the device is in the Powered state.

2. The hub detects the device. The hub monitors the voltages on the signal
lines of each of its ports. The hub has a pull-down resistor of 14.25 to 24.8
kilohms on each of the port’s two signal lines (D+ and D-). A device has a
pull-up resistor of 900 to 1575 ohms on either D+ for a full-speed device or
D- for a low-speed device. High-speed-capable devices attach at full speed.
When a device plugs into a port, the device’s pull-up brings its line high,
enabling the hub to detect that a device is attached. Chapter 15 has more on
how hubs detect devices.

On detecting a device, the hub continues to provide power but doesn’t yet
transmit USB traffic to the device.

3. The host learns of the new device. Each hub uses its interrupt endpoint
to report events at the hub. The report indicates only whether the hub or a
port (and if so, which port) has experienced an event. On learning of an
event, the host sends the hub a Get_Port_Status request to find out more.
Get_Port_Status and the other requests described here are standard

USB Complete 87

Chapter 4

88

hub-class requests that all hubs support. The information returned tells the
host when a device is newly attached.

4. The hub detects whether a device is low or full speed. Just before the
hub resets the device, the hub determines whether the device is low or full
speed by examining the voltages on the two signal lines. The hub detects the
speed of a device by determining which line has the higher voltage when
idle. The hub sends the information to the host in response to the next
Get_Port_Status request. A 1.x hub may instead detect the device’s speed
just after a bus reset. USB 2.0 requires speed detection to occur before the
reset so the hub knows whether to check for a high-speed-capable device
during reset, as described below.

5. The hub resets the device. When a host learns of a new device, the host
controller sends the hub a Set_Port_Feature request that asks the hub to
reset the port. The hub places the device’s USB data lines in the Reset condi-
tion for at least 10 milliseconds. Reset is a special condition where both D+
and D- are a logic low. (Normally, the lines have opposite logic states.) The
hub sends the reset only to the new device. Other hubs and devices on the
bus don’t see the reset.

6. The host learns if a full-speed device supports high speed. Detecting
whether a device supports high speed uses two special signal states. In the
Chirp] state, only the D+ line is driven and in the Chirp K state, only the
D- line is driven.

During the reset, a device that supports high speed sends a Chirp K. A
high-speed-capable hub detects the chirp and responds with a series of alter-
nating Chirp Ks and Chirp Js. On detecting the pattern KJKJK]J, the device
removes its full-speed pull up and performs all further communications at
high speed. If the hub doesn't respond to the device’s Chirp K, the device
knows it must continue to communicate at full speed. All high-speed
devices must be capable of responding to enumeration requests at full speed.

7. The hub establishes a signal path between the device and the bus.
The host verifies that the device has exited the reset state by sending a
Get_Port_Status request. A bit in the returned data indicates whether the

USB Complete

Enumeration: How the Host Learns about Devices

device is still in the reset state. If necessary, the host repeats the request until
the device has exited the reset state.

When the hub removes the reset, the device is in the Default state. The
device’s USB registers are in their reset states and the device is ready to
respond to control transfers at Endpoint 0. The device communicates with
the host using the default address of 00h. The device can draw up to 100
milliamperes from the bus.

8. The host sends a Get_Descriptor request to learn the maximum
packet size of the default pipe. The host sends the request to device
address 0, Endpoint 0. Because the host enumerates only one device at a
time, only one device will respond to communications addressed to device
address 0, even if several devices attach at once.

The eighth byte of the device descriptor contains the maximum packet size
supported by Endpoint 0. A Windows host requests 64 bytes, but after
receiving just one packet (whether or not it has 64 bytes), the host begins
the Status stage of the transfer. On completion of the Status stage, a Win-
dows host requests the hub to reset the device, as in Step 5 above. The USB
specification doesn’t require a reset here. Resetting is a precaution that
ensures that the device will be in a known state when the reset ends.

9. The host assigns an address. The host controller assigns a unique
address to the device by sending a Set_Address request. The device com-
pletes the Status stage of the request using the default address and then
implements the new address. The device is now in the Address state. All
communications from this point on use the new address. The address is
valid until the device is detached, the port is reset, or the system reboots. On
the next enumeration, the host may assign a different address to the device.

10. The host learns about the device’s abilities. The host sends a
Get_Descriptor request to the new address to read the device descriptor.
This time the host retrieves the entire descriptor. The descriptor is a data
structure containing the maximum packet size for Endpoint 0, the number
of configurations the device supports, and other basic information about the
device. The host uses this information in the communications that follow.

USB Complete 89

Chapter 4

90

The host continues to learn about the device by requesting the one or more
configuration descriptors specified in the device descriptor. A request for a
configuration descriptor is actually a request for the configuration descriptor
followed by all of that descriptor’s subordinate descriptors. A Windows host
begins by requesting just the configuration descriptor’s nine bytes. Included
in these bytes is the total length of the configuration descriptor and its sub-
ordinate descriptors.

Windows then requests the configuration descriptor again, this time using
the retrieved total length. The device responds by sending the configuration
descriptor followed by the configuration’s interface descriptor(s), with each
interface descriptor followed by any endpoint descriptors for the interface.
Some configurations also include class- or vendor-specific descriptors that
extend or modify another descriptor. These descriptors follow the descriptor
being extended or modified. Each descriptor begins with its length and type.
The Descriptors section in this chapter has more on what each descriptor
contains.

11. The host assigns and loads a device driver (except for composite
devices). After learning about a device from its descriptors, the host looks for
the best match in a device driver to manage communications with the
device. In selecting a driver, Windows tries to match the information in the
PC’s INF files with the Vendor ID, Product ID, and (optional) release num-
ber retrieved from the device. If there is no match, Windows looks for a
match with any class, subclass, and protocol values retrieved from the
device. If the device has been enumerated previously, Windows can use
information in the system registry instead of searching the INF files. After
the operating system assigns and loads the driver, the driver may request the
device to resend descriptors or send other class-specific descriptors.

An exception to this sequence is composite devices, which can have different
drivers assigned to different interfaces in a configuration. The host can
assign these drivers only after the interfaces are enabled, which requires the
device to be configured (as described in the next step).

12. The host’s device driver selects a configuration. After learning about a
device from the descriptors, the device driver requests a configuration by

USB Complete

Enumeration: How the Host Learns about Devices

sending a Set_Configuration request with the desired configuration num-
ber. Some devices support only one configuration. If a device supports mul-
tiple configurations, the driver can decide which configuration to request
based on information the driver has about how the device will be used, or
the driver can ask the user what to do or just select the first configuration.
The device reads the request and enables the requested configuration. The
device is now in the Configured state and the device’s interface(s) are

enabled.

For composite devices, the host assigns drivers at this point. As with other
devices, the host uses the information retrieved from the device to find a
matching driver for each active interface in the configuration. The device is
now ready for use.

The other two device states are Attached and Suspend.

Attached state. If the hub isn't providing power to a device’s VBUS line, the
device is in the Attached state. The absence of power may occur if the hub
has detected an over-current condition or if the host requests the hub to
remove power from the port. With no power on VBUS, the host and device
cant communicate, so from their perspective, the situation is the same as
when the device isn’t attached at all.

Suspend State. A device enters the Suspend state after detecting no bus
activity, including Start-of-Frame markers, for at least 3 milliseconds. In the
Suspend state, the device should limit its use of bus power. Both configured
and unconfigured devices must support this state. Chapter 16 has more
about the Suspend state.

Enumerating a Hub

Hubs are also USB devices, and the host enumerates a newly attached hub
in exactly the same way as other devices. If the hub has devices attached, the
host enumerates each of these after the hub informs the host of their pres-
ence.

USB Complete 91

Chapter 4

Device Removal

When a user removes a device from the bus, the hub disables the device’s
port. The host learns that the removal occurred after polling the hub, learn-
ing that an event has occurred, and sending a Get_Port_Status request to
find out what the event was. Windows removes the device from the Device
Manager’s display and the device’s address becomes available to another
newly attached device.

Tips for Successful Enumeration

92

Successful enumeration is essential. Without it, the device and host can’t
perform any additional communications. Most chip vendors provide exam-
ple code to get you started. Even if your device uses a different class or has
other differences, the example code can serve as a model. If your controller
interfaces to an external CPU, you may have to adapt code written for
another chip.

In general, a device should assume nothing about what requests or events
the host will initiate and should just concentrate on responding to requests
and events as they occur. The following tips have specific advice about how
to avoid common problems.

Don’t assume requests or events will occur in a specific order. The USB
2.0 specification says nothing about what order a host might choose in send-
ing control requests during enumeration. A host might also choose to reset
the bus at any time, and the device must detect the reset and respond appro-
priately.

Be ready to abandon a control transfer or end it early. On receiving a
new Setup packet, a device must abandon any transfer in progress and begin
the new one. On receiving an OUT token packet, the device must assume
that the host is beginning the Status stage of the transfer even if the device
hasn’t sent all of the requested data in the Data stage.

Don’t attempt to send more data than the host asks for. In the Data stage
of a Control Read transfer, a device should send no more than the amount

USB Complete

Enumeration: How the Host Learns about Devices

of data the host has asked for. If the host requests nine bytes, the device
should send no more than nine bytes.

Send a zero-length data packet when required. If the device has less than
the requested amount of data to return and if the amount of data is an exact
multiple of the endpoint’s maximum packet size, the device should indicate
that there is no more data by returning a zero-length data packet in response
to the next IN token packet.

Stall unsupported requests. A device shouldnt assume it knows every
request the host might send. The device should return a STALL in response
to any request the device doesn’t recognize or support.

Don’t set the address too soon. In a Set_Address request, the device should
set its new address only after the Status stage of the request is complete.

Be ready to enter the Suspend state. A host can suspend the bus when the
device is in any powered state, including before the device has been config-
ured. When the bus is suspended, the device must reduce its use of bus
power.

Test under different host-controller types. Some host controllers schedule
multiple stages of a control transfer in a single frame, while others don'.
Devices should be able to handle either way. Chapter 8 has more about host
controllers.

Descriptors

USB descriptors are the data structures, or formatted blocks of information,
that enable the host to learn about a device. Each descriptor contains infor-
mation about the device as a whole or an element of the device.

All USB devices must respond to requests for the standard USB descriptors.
The device must store the information in the descriptors and respond to
requests for the descriptors.

USB Complete 93

Chapter 4

Types of Descriptors

94

As described earlier in this chapter, during enumeration the host uses con-
trol transfers to request descriptors from the device. As enumeration
progresses, the requested descriptors concern increasingly small elements of
the device: first the entire device, then each configuration, each configura-
tion’s interface(s), and finally each interface’s endpoint(s). Table 4-1 lists the
descriptor types.

The higher-level descriptors inform the host of any additional, lower-level
descriptors. Except for compound devices, each device has one and only one
device descriptor that contains information about the device as a whole and
specifies the number of configurations the device supports. Each device also
has one or more configuration descriptors that contain information about
the device’s use of power and the number of interfaces supported by the con-
figuration. Each interface descriptor specifies zero or more endpoint descrip-
tors that contain the information needed to communicate with an endpoint.
Each endpoint descriptor has information about how the endpoint transfers
data. An interface with no endpoint descriptors must use the control end-
point for communications.

On receiving a request for a configuration descriptor, a device should return
the configuration descriptor and all of the configuration’s interface, end-
point, and other subordinate descriptors, up to the requested number of
bytes. There is no request to retrieve, for example, only an endpoint descrip-
tor. Devices that support both full and high speeds support two additional
descriptor types: device_qualifier and other_speed_configuration. These
and their subordinate descriptors contain information about the device’s
behavior when using the speed not currently selected.

A string descriptor can store text such as the vendor’s or device’s name.
Other descriptors can contain index values that point to these string descrip-
tors, and the host can read the string descriptors using Get_Descriptor
requests.

In addition to the standard descriptors, a device may contain class- or ven-
dor-specific descriptors. These descriptors offer a structured way for a device
to provide more detailed information about itself. For example, an interface

USB Complete

Enumeration: How the Host Learns about Devices

Table 4-1: The bDescriptorType field in a descriptor contains a value that
identifies the descriptor type.

bDescriptorType |Descriptor Type Required?

O01h device Yes.

02h configuration Yes.

03h string No. Optional descriptive text.

04h interface Yes.

05h endpoint No, if the device uses only Endpoint 0.

06h device_qualifier Yes, for devices that support both full and high

speeds. Not allowed for other devices.

07h other_speed_configuration |Yes, for devices that support both full and high
speeds. Not allowed for other devices.

08h interface_power No. Supports interface-level power
management.

0%h OTG For On-The-Go devices only.

0OAh debug No.

0Bh interface_association For composite devices.

descriptor may specify that the interface belongs to the HID class and has a
HID class descriptor.

Each descriptor contains a value that identifies the descriptor type. Table
4-1 shows the values for the standard descriptor types. In addition to these
values, a class or vendor may define additional descriptors. Two examples of
class codes are 29h for a hub descriptor and 21h for a HID descriptor.
Within the HID class, 22h indicates a report descriptor and 23h indicates a
physical descriptor.

In the descriptor’s bDescriptorType value, bit 7 is always zero. Bits 6 and 5
identify the descriptor type: 00h=standard, Olh=class, 02h=vendor,
03h=reserved. Bits 4 through 0 identify the descriptor.

Each descriptor consists of a series of fields. Most of the field names use pre-
fixes to indicate something about the format or contents of the data in that
field: & = byte (8 bits), w = word (16 bits), bm = bit map, bcd = binary-coded

decimal, 7 = index, 7d = identifier.

USB Complete 95

Chapter 4

Device Descriptor

96

The device descriptor contains basic information about the device. This
descriptor is the first one the host reads on device attachment and includes
the information the host needs to retrieve additional information from the
device. A host retrieves a device descriptor by sending a Get_Descriptor
request with the high byte of the Setup transaction’s wValue field equal to 1.

The descriptor has 14 fields. Table 4-2 lists the fields in the order they occur
in the descriptor. The descriptor includes information about the descriptor
itself, the device, its configurations, and any classes the device belongs to.
The following descriptions group the information by function.

The Descriptor
bLength. The length in bytes of the descriptor.
bDescriptorType. The constant DEVICE (01h).

The Device

bcdUSB. The USB specification version that the device and its descriptors
comply with in BCD (binary-coded decimal) format. If you think of the
version’s value as a decimal number, the upper byte represents the integer,
the next four bits are tenths, and the final four bits are hundredths. So ver-
sion 1.0 is 0100h; version 1.1 is 0110h, and version 2.0 is 0200h. Note that
version 1.1 is 7oz 0101h. Also remember that a 2.0 device does not have to
be high speed. Any new low- or full-speed design should comply with the

latest version of the specification.

idVendor. Members of the USB-IF and others who pay an administrative
fee receive the rights to use a unique Vendor ID. The host may have an INF
file that contains this value, and if so, Windows uses the value to help decide
what driver to load for the device. Except for devices used only in-house

where the user is responsible for preventing conflicts, every device descriptor
must have a valid Vendor ID in this field.

idProduct. The owner of the Vendor ID assigns a Product ID to identify
the device. Both the device descriptor and the device’s INF file on the host
may contain this value, and if so, Windows uses the value to help decide

USB Complete

Enumeration: How the Host Learns about Devices

Table 4-2: The device descriptor has 14 fields in 18 bytes.

Offset Field Size Description

(decimal) (bytes)

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 The constant DEVICE (01h)

2 bcdUSB 2 USB specification release number (BCD)

4 bDeviceClass 1 Class code

5 bDeviceSubclass 1 Subclass code

6 bDeviceProtocol 1 Protocol Code

7 bMaxPacketSize0 1 Maximum packet size for Endpoint 0

8 idVendor 2 Vendor ID

10 idProduct 2 Product ID

12 bedDevice 2 Device release number (BCD)

14 iManufacturer 1 Index of string descriptor for the manufacturer

15 iProduct 1 Index of string descriptor for the product

16 iSerialNumber 1 Index of string descriptor containing the serial
number

17 bNumConfigurations | 1 Number of possible configurations

what driver to load for the device. Each Product ID is specific to a Vendor
ID, so multiple vendors can use the same Product ID without conflict.

bcdDevice. The devices release number in BCD format. The vendor
assigns this value. The host may use this value in deciding which driver to

load.

iManufacturer. An index that points to a string describing the manufac-
turer. This value is zero if there is no manufacturer descriptor.

iProduct. An index that points to a string describing the product. This
value is zero if there is no string descriptor.

iSerialNumber. An index that points to a string containing the device’s
serial number. This value is zero if there is no serial number. Some device
classes (such as mass storage) require serial numbers. Serial numbers are use-
ful if users may have more than one identical device on the bus and the host
needs to keep track of which is which even after rebooting. Serial numbers

USB Complete 97

Chapter 4

98

also enable a host to determine whether a peripheral is the same one used
previously or a new installation of a peripheral with the same Vendor ID and
Product ID. No devices with the same Vendor ID, Product ID, and device
release number should have the same serial number.

The Configuration
bNumConfigurations. The number of configurations the device supports.

bMaxPacketSize0. The maximum packet size for Endpoint 0. The host
uses this information in the requests that follow. For low-speed devices, this
value must be 8. Full-speed devices may use 8, 16, 32, or 64. High-speed
devices must use 64.

Classes

bDeviceClass. For devices whose function is defined at the device level, this
field specifies the device’s class. Values from 1 to FEh are reserved for USB’s
defined classes. Table 4-3 shows the defined codes. The value FFh means
that the class is specific to the vendor and defined by the vendor. Many
devices specify their class or classes in interface descriptors, and for these
devices, the bDeviceClass field in the device descriptor is 00h (or EFh if the

function uses an interface association descriptor).

bDeviceSubclass. This field can specify a subclass within a class. If bDe-
viceClass is 0, the bDeviceSubclass must be 0. If bDeviceClass is between 1
and FEh, bDeviceSubclass must be a code defined in a USB class specifica-
tion. A value of FFh means that the subclass is specific to the vendor. A sub-
class can add support for additional features and abilities shared by a group
of functions within a class.

bDeviceProtocol. This field can specify a protocol defined by the selected
class or subclass. For example, a 2.0 hub uses this field to indicate whether
the hub is currently supporting high speed and if so, if the hub supports one
or multiple transaction translators. If bDeviceClass is between 01h and FEh,
the protocol must be a code defined by a USB class specification.

USB Complete

Enumeration: How the Host Learns about Devices

Table 4-3: The bDeviceClass field in the device descriptor can name a class the
device belongs to.

bDeviceClass

Description

00h

The interface descriptor names the class.
(Use EFh if the function has an interface association descriptor.)

02h Communications
0%h Hub
DCh Diagnostic device (can also be declared at interface level)

bDeviceSubClass = 1 for Reprogrammable Diagnostic Device with
bDeviceProtocol = 1 for USB2 Compliance Device

Wireless Controller (can also be declared at interface level)
bDeviceSubClass = 1 for RF Controller with
bDeviceProtocol = 1 for Bluetooth Programming Interface

Miscellaneous Device
bDeviceSubClass = 2 for Common Class with
bDeviceProtocol = 1 for Interface Association Descriptor

Vendor-specific (can also be declared at interface level)

Device_qualifier Descriptor

Devices that support both full and high speeds must have a device_qualifier
descriptor. When a device switches speeds, some fields in the device descrip-
tor may change. The device_qualifier descriptor contains the values of these
fields at the speed not currently in use. In other words, the contents of fields
in the device and device_qualifier descriptors swap depending on which
speed is being used. A host retrieves a device_qualifier descriptor by sending
a Get_Descriptor request with the high byte of the Setup transaction’s
wValue field equal to 6.

The descriptor has nine fields. Table 4-4 lists the fields in the order they
occur in the descriptor. The descriptor includes information about the
descriptor itself, the device, its configurations, and its classes.

The Vendor ID, Product ID, device release number, manufacturer string,
product string, and serial-number string don’t change when the speed
changes, so the device_qualifier descriptor doesn’t include these values.

The host can use a Get_Descriptor request to retrieve the device_qualifier
descriptor. The following descriptions group the information by function.

USB Complete 99

Chapter 4

Table 4-4: The device_qualifier descriptor has nine fields.

Offset Field Size Description
(decimal) (bytes)
0 bLength 1 Descriptor size in bytes
1 bDescriptorType 1 The constant DEVICE_QUALIFIER (06h)
2 bcdUSB 2 USB specification release number (BCD)
4 bDeviceClass 1 Class code
5 bDeviceSubclass 1 Subclass code
6 bDeviceProtocol 1 Protocol Code
7 bMaxPacketSize0 1 Maximum packet size for Endpoint O
8 bNumConfigurations |1 Number of possible configurations
9 Reserved 1 For future use
The Descriptor
bLength. The length in bytes of the descriptor.
bDescriptorType. The constant DEVICE_QUALIFIER (06h).
The Device
bcdUSB. The USB specification number that the device and its descriptors
comply with. Must be at least 0200h (USB 2.0).
The Configuration
bNumConfigurations. The number of configurations the device supports.
bMaxPacketSize0. The maximum packet size for Endpoint 0.
Classes
bDeviceClass. For devices that belong to a class, this field can name the
class.
bDeviceSubclass. For devices that belong to a class, this field can specify a
subclass within the class.
bDeviceProtocol. This field can specify a protocol defined by the selected
class or subclass. For example, a 2.0 hub must support both a low- and
full-speed protocol and a high-speed protocol. The device descriptor con-
100 USB Complete

Enumeration: How the Host Learns about Devices

tains the code for the currently active protocol, and the device_qualifier
descriptor contains the code for the not-active protocol.

Reserved. For future use.

Configuration Descriptor

After retrieving the device descriptor, the host can retrieve the device’s con-
figuration, interface, and endpoint descriptors.

Each device has at least one configuration that specifies the device’s features
and abilities. Often a single configuration is enough, but a device with mul-
tiple uses or modes can support multiple configurations. Only one configu-
ration is active at a time. Each configuration requires a descriptor. The
configuration descriptor contains information about the device’s use of
power and the number of interfaces supported. Each configuration descrip-
tor has subordinate descriptors, including one or more interface descriptors
and optional endpoint descriptors. A host retrieves a configuration descrip-
tor and its subordinate descriptors by sending a Get_Descriptor request
with the high byte of the Setup transaction’s wValue field equal to 2.

The host selects a configuration with the Set_Configuration request and
reads the current configuration number with a Get_Configuration request.

The descriptor has eight fields. Table 4-5 lists the fields in the order they
occur in the descriptor. The fields contain information about the descriptor
itself, the configuration, and the device’s use of power in that configuration.
The following descriptions group the information by function.

The Descriptor
bLength. The length (in bytes) of the descriptor.
bDescriptorType. The constant CONFIGURATION (02h).

wTotalLength. The number of bytes in the configuration descriptor and all
of its subordinate descriptors.

USB Complete 101

Chapter 4

Table 4-5: The configuration descriptor has eight fields.

Offset Field Size Description
(decimal) (bytes)
0 bLength 1 Descriptor size in bytes
1 bDescriptorType 1 The constant Configuration (02h)
2 wTotalLength 2 The number of bytes in the configuration descrip-
tor and all of its subordinate descriptors
4 bNumlnterfaces 1 Number of interfaces in the configuration
5 bConfigurationValue |1 Identifier for Set_Configuration and
Get_Configuration requests
iConfiguration 1 Index of string descriptor for the configuration
bmAttributes 1 Self/bus power and remote wakeup settings
bMaxPower 1 Bus power required, expressed as (maximum mil-
liamperes/2)

102

The Configuration

bConfigurationValue. Identifies the configuration for Get_Configuration
and Set_Configuration requests. Must be 1 or higher. A Set_Configuration
request with a value of zero causes the device to enter the Not Configured
state.

iConfiguration. Index to a string that describes the configuration. This
value is zero if there is no string descriptor.

bNumlInterfaces. The number of interfaces in the configuration. The mini-
mum is 1.

Power Use

bmAttributes. Bit 6=1 if the device is self-powered or 0 if bus-powered. Bit
5=1 if the device supports the remote wakeup feature, which enables a sus-
pended USB device to tell its host that the device wants to communicate. A
USB device must enter the Suspend state if there has been no bus activity for
3 milliseconds. If an event at a suspended device requires action from the
host, a device with remote wakeup enabled can request the host to resume
communications.

USB Complete

Enumeration: How the Host Learns about Devices

The other bits in the field are unused. Bits 0 through 4 must be 0. Bit 7
must be 1. (In USB 1.0, bit 7 was set to 1 to indicate that the configuration
was bus powered. In USB 1.1 and higher, setting bit 6 to 0 is enough to
indicate that the configuration is bus powered.)

bMaxPower. Specifies how much bus current a device requires. The bMax-
Power value equals one half the number of milliamperes required. If the
device requires 200 milliamperes, bMaxPower=100. The maximum current
a device can request is 500 milliamperes. Storing half the number of milli-
amperes enables one byte to store values up to the maximum. If the
requested current isn’t available, the host will refuse to configure the device.
A driver may then request an alternate configuration if available.

Other_speed_configuration Descriptor
The other descriptor unique to devices that support both full and high

speeds is the other_speed_configuration descriptor. The structure of the
descriptor is identical to that of the configuration descriptor. The only dif-
ference is that the other-speed_configuration_descriptor describes the con-
figuration when the device is operating at the speed not currently active.
The other_speed_configuration descriptor has subordinate descriptors just
as the configuration descriptor does. A host retrieves an
other_speed_configuration descriptor by sending a Get_Descriptor request

with the high byte of the Setup transaction’s wValue field = 7.
The descriptor has eight fields. Table 4-6 lists the fields in the order they

occur in the descriptor.

Interface Association Descriptor

An interface association descriptor (IAD) identifies multiple interfaces that
are associated with a function. In relation to a device and its descriptors, the
term interface refers to a feature or function a device implements.

Most device classes specify their functions at the interface level rather than at
the device level. Assigning functions to interfaces makes it possible for a sin-
gle configuration to support multiple interfaces and thus multiple functions.
As explained in Chapter 1, a device that has multiple interfaces that are

USB Complete 103

Chapter 4

Table 4-6: The other_speed_configuration descriptor has the same eight fields
as the configuration descriptor.

Offset Field Size Description

(decimal) (bytes)

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 The constant
OTHER_SPEED_CONFIGURATION (07h)

2 wTotalLength 2 The number of bytes in the configuration descrip-
tor and all of its subordinate descriptors

4 bNumlnterfaces 1 Number of interfaces in the configuration

5 bConfigurationValue |1 Identifier for Set_Configuration and
Get_Configuration requests

6 iConfiguration 1 Index of string descriptor for the configuration

7 bmAttributes 1 Self/bus power and remote wakeup settings

8 MaxPower 1 Bus power required, expressed as (maximum
milliamperes/2)

104

active at the same time is a composite device. Each interface has its own
interface descriptor and an endpoint descriptor for each endpoint the inter-
face uses. The host loads a driver for each interface.

When two or more interfaces in a configuration are associated with the same
function, the interface association descriptor can tell the host which inter-
faces are associated with each other. For example, a video-camera function
may use one interface to control the camera and another to carry the video
data.

The USB Engineering Change Notice that defines the interface association
descriptor says that the descriptor “must be supported by future implemen-
tations of devices that use multiple interfaces to manage a single device func-
tion.” Devices that comply with the video-class specification must use an
interface association descriptor. Class specifications that predate the descrip-
tor of course don’t require it. Hosts that don't support the descriptor ignore
it. Support for the descriptor was added in Windows XP SP2.

To enable the host to identify devices that use the Interface Association
descriptor, the device descriptor should contain the following values: bDe-
viceClass = EFh (miscellaneous device class), bDeviceSubClass = 02h (com-

USB Complete

Enumeration: How the Host Learns about Devices

mon class), and bDeviceProtocol = 01h (interface association descriptor).
These codes are together referred to as the “Multi-interface Function Device

Class Codes.”

A host retrieves an interface association descriptor by requesting the config-
uration descriptor for the configuration the interface association belongs to.

An interface association descriptor has eight fields. Table 4-8 lists the fields
in the order they occur in the descriptor. The following descriptions group
the information by function.

The Descriptor
bLength. The number of bytes in the descriptor.
bDescriptorType. The constant INTERFACE ASSOCIATION (0Bh).

The Interfaces

bFirstInterface. Identifies the interface number of the first interface of mul-
tiple interfaces associated with a function. The interface number is the value
of blnterfaceNumber in the interface descriptor. The interface numbers of
associated interfaces must be contiguous.

bInterfaceCount. Gives the number of contiguous interfaces associated
with the function.

The Function

bFunctionClass. A class code for the function shared by the associated
interfaces. For classes that don’t specify a value to use, the preferred value is
the blnterfaceClass value from the descriptor of the first associated interface.

Values from 01h to FEh are reserved for USB-defined classes. FFh indicates
a vendor-defined class. Zero is not allowed.

bFunctionSubClass. A subclass code for the function shared by the associ-
ated interfaces. For classes that don’t specify a value to use, the preferred
value for existing device classes is the blnterfaceSubClass value from the
descriptor of the first associated interface.

USB Complete 105

Chapter 4

Table 4-7: The interface association descriptor has eight fields.

Offset Field Size Description

(decimal) (bytes)

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 The constant Interface Association (OBh)

2 bFirstInterface 1 Number identifying the first interface associated
with the function

3 bInterfaceCount 1 The number of contiguous interfaces associated
with the function

4 bFunctionClass 1 Class code

5 bFunctionSubClass |1 Subclass code

6 bFunctionProtocol |1 Protocol code

8 iFunction 1 Index of string descriptor for the function

bInterfaceProtocol. A protocol code for the function shared by the associ-
ated interfaces. For classes that don’t specify a value to use, the preferred
value for existing device classes is the blnterfaceProtocol value from the
descriptor of the first associated interface.

iInterface. Index to a string that describes the function. This value is zero if
there is no string descriptor.

Interface Descriptor

106

The interface descriptor provides information about a function or feature
that a device implements. The descriptor contains class, subclass, and proto-
col information and the number of endpoints the interface uses.

A configuration can have multiple interfaces that are active at the same time.
The interfaces may be associated with a single function or they may be unre-
lated. A configuration can also support alternate, mutually exclusive inter-
faces. The host can request an alternate interface with a Set_Interface
request and read the current interface number with a Get_Interface request.
Each interface has its own interface descriptor and subordinate descriptors.
Devices that use isochronous transfers must have alternate interfaces because
the default interface must request no isochronous bandwidth. Changing
interfaces is simpler than changing configurations.

USB Complete

Enumeration: How the Host Learns about Devices

A host retrieves interface descriptors by requesting the configuration
descriptor for the configuration the interface belongs to.

An interface descriptor has nine fields. Table 4-8 lists the fields in the order
they occur in the descriptor. Many devices don’t use the values in all of the
fields, such as those that enable alternate settings and protocols. The follow-
ing descriptions group the information by function.

The Descriptor
bLength. The number of bytes in the descriptor.
bDescriptorType. The constant INTERFACE (04h).

The Interface

iInterface. Index to a string that describes the interface. This value is zero if
there is no string descriptor.

bInterfaceNumber. Identifies the interface. In a composite device, a config-
uration has multiple interfaces that are active at the same time. Each inter-
face must have a descriptor with a unique value in this field. The default is

Z€ro.

bAlternateSetting. When a configuration supports multiple, mutually
exclusive interfaces, each of the interfaces has a descriptor with the same
value in blnterfaceNumber and a unique value in bAlternateSetting. The
Get_Interface request retrieves the currently active setting. The
Set_Interface request selects the setting to use. The default is zero.

bNumEndpoints. The number of endpoints the interface supports in addi-
tion to Endpoint 0. For a device that supports only Endpoint 0, NumEnd-
points is zero.

blInterfaceClass. Similar to bDeviceClass in the device descriptor, but for
devices with a class specified by the interface. Table 4-9 shows defined codes.
Values from 01h to FEh are reserved for USB-defined classes. FFh indicates
a vendor-defined class. Zero is reserved.

bInterfaceSubClass. Similar to bDeviceSubClass in the device descriptor,
but for devices with a class defined by the interface. For interfaces that

USB Complete 107

Chapter 4

Table 4-8: The interface descriptor has nine fields.

Offset Field Size Description

(decimal) (bytes)

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 The constant Interface (04h)

2 bInterfaceNumber |1 Number identifying this interface

3 bAlternateSetting 1 Value used to select an alternate setting

4 bNumEndpoints 1 Number of endpoints supported, not counting
Endpoint 0

5 blnterfaceClass 1 Class code

6 blnterfaceSubclass |1 Subclass code

7 blnterfaceProtocol |1 Protocol code

8 ilnterface 1 Index of string descriptor for the interface

belong to a class, this field may specify a subclass within the class. If bInter-
faceClass is zero, blnterfaceSubclass must be zero. If blnterfaceClass is
between 01h and FEh, blnterfaceSubclass must zero or a code defined by a
USB specification. A value of FFh means that the subclass is specific to the
vendor. The diagnostic-device, wireless-controller, and application-specific
classes have defined subclasses.

bInterfaceProtocol. Similar to bDeviceProtocol in the device descriptor,
but for devices whose class is defined by the interface. May specify a proto-
col defined by the selected blnterfaceClass or bInterfaceSubClass. If blnter-
faceClass is between 01h and FEh, blnterfaceProtocol must zero or a code

defined by a USB specification.

Endpoint Descriptor

108

Each endpoint specified in an interface descriptor has an endpoint descrip-
tor. Endpoint 0 never has a descriptor because every device must support
Endpoint 0, the device descriptor contains the maximum packet size, and
the USB specification defines everything else about the endpoint. A host
retrieves endpoint descriptors by requesting the configuration descriptor for
the configuration the endpoints belong to.

USB Complete

Enumeration: How the Host Learns about Devices

Table 4-9: The binterfaceClass field in the interface descriptor can name a class
the interface belongs to.

Class Code Description

(hexadecimal)

01 Audio

02 (Communication Device Class) Communication Interface

03 Human Interface Device

05 Physical

06 Image

07 Printer

08 Mass storage

09 Hub

0A (Communication Device Class) Data Interface

0B Smart Card

0D Content Security

OE Video

DC Diagnostic device (can also be declared at the device level)
blnterfaceSubClass = 1 for Reprogrammable Diagnostic Device with
blnterfaceProtocol = 1 for USB2 Compliance Device

EO Wireless controller (can also be declared at device level)
bInterfaceSubClass = 1 for RF Controller with
blnterfaceProtocol = 1 for Bluetooth Programming Interface

FE Application specific
blnterfaceSubClass = 1 for Device Firmware Update
blnterfaceSubClass = 2 for IrDA Bridge
bInterfaceSubClass = 3 for Test and Measurement

FF Vendor specific (can also be declared at the device level)

Table 4-10 lists the endpoint descriptor’s six fields in the order they occur in
the descriptor. The following descriptions group the information by func-
tion.

The Descriptor
bLength. The number of bytes in the descriptor.
bDescriptorType. The constant ENDPOINT (05h).

USB Complete 109

Chapter 4

Table 4-10: The endpoint descriptor has six fields.

Offset

(decimal) (bytes)

Field Size Description

0

bLength 1 Descriptor size in bytes

bDescriptorType The constant Endpoint (05h)

bEndpointAddress Endpoint number and direction

wMaxPacketSize Maximum packet size supported

1
2
3
4
5

1
1
bmAttributes 1 Transfer type supported
2
1

blnterval Maximum latency/polling interval/NAK rate

110

The Endpoint

bEndpointAddress. Contains the endpoint number and direction. Bits 0
through 3 are the endpoint number. Low-speed devices can have a maxi-
mum of 3 endpoints (usually numbered 0 through 2), while full- and
high-speed devices can have 16 (0 through 15). Bit 7 is the direction: Out =
0, In = 1, Bidirectional (for control transfers) = ignored. Bits 4, 5, and 6 are
unused and must be zero.

bmAttributes. Bits 1 and 0 specify the type of transfer the endpoint sup-
ports. 00=Control, 01=Isochronous, 10=Bulk, 11=Interrupt. For Endpoint
0, Control is assumed.

In USB 1.1, bits 2 through 7 were reserved. USB 2.0 uses bits 2 through 5
for full- and high-speed isochronous endpoints. Bits 3 and 2 indicate a syn-
chronization type: 00=no synchronization, 01=asynchronous, 10=adaptive,
11=synchronous. Bits 5 and 4 indicate a usage type: 00=data endpoint,
01l=feedback endpoint, 10=implicit feedback data endpoint, 11=reserved.
For non-isochronous endpoints, bits 2 through 5 must be zero. For all end-
points, bits 6 and 7 must be zero.

wMaxPacketSize. The maximum number of data bytes the endpoint can
transfer in a transaction. The allowed values vary with the device speed and

type of transfer.

Bits 10 through 0 are the maximum packet size, from 0 to 1024 (0 to 1023
in USB 1.x). In USB 2.0, bits 12 and 11 indicate how many additional
transactions per microframe a high-speed endpoint supports: 00=no addi-

USB Complete

Enumeration: How the Host Learns about Devices

tional transactions (total of 1 transaction per microframe), 01=1 additional
(total of 2 transactions per microframe), 10=2 additional (total of 3 transac-
tions per microframe), 11=reserved. In USB 1.x, these bits were reserved
and set to zero. Bits 13 through 15 are reserved and must be zero.

blnterval. Can indicate the maximum latency for polling interrupt end-
points, the interval for polling isochronous endpoints, or the maximum
NAK rate for high-speed bulk OUT or control endpoints. The allowed
range and how the value is used varies with the device speed, the transfer
type, and whether or not the device complies with USB 2.0.

For low-speed interrupt endpoints, the maximum latency equals blnterval
in milliseconds. The value may range from 10 to 255.

For all full-speed interrupt endpoints and for full-speed isochronous end-
points on 1.x devices, the interval equals blnterval in milliseconds. For
interrupt endpoints, the value may range from 1 to 255. For isochronous
endpoints in 1.x devices, the value must be 1. For isochronous endpoints in
full-speed 2.0 devices, values from 1 to 16 are allowed, and the interval is

2blnlerval-l

calculated as , allowing a range from 1 millisecond to 32.768 sec-

onds.
For full-speed bulk and control transfers, the value is ignored.

For high-speed endpoints, the value is in units of 125 microseconds, which
is the width of a microframe. The value for interrupt and isochronous end-

2blmerval- 1

points may range from 1 to 16, and the interval is calculated as to

allow a range from 125 microseconds to 4.096 seconds.

For high-speed bulk OUT and control endpoints, the value indicates the
endpoint’s maximum NAK rate. This value is relevant when the device has
received data and returned ACK, and the host has more data to send in the
transfer. By returning ACK, the device is saying that it expects to be able to
accept the next transaction’s data. (Otherwise the device would return
NYET.) If the next data packet arrives and for some reason the device cant
accept the packet, the endpoint returns NAK. The blnterval value says that
the endpoint will return NAK no more than once in each period specified
by blnterval. The value can range from 0 to 255 microframes. A value of

USB Complete 111

Chapter 4

zero means the endpoint will never NAK. The host isn’t required to use the
maximum-NAK-rate information.

String Descriptor

112

A string descriptor contains descriptive text. The USB 2.0 specification
defines descriptors that can contain indexes to various strings, including
strings that describe the manufacturer, product, serial number, configura-
tion, and interface. Class- and vendor-specific descriptors can contain
indexes to additional string descriptors. Support for string descriptors is
optional, though a class may require them. A host retrieves a string descrip-
tor by sending a Get_Descriptor request with the high byte of the Setup
transaction’s wValue field equal to 3. Table 4-11 shows the descriptor’s fields
and their purposes.

The Descriptor
bLength. The number of bytes in the descriptor.
bDescriptorType. The constant STRING (03h).

The String

When the host requests a String descriptor, the low byte of the wValue field
is an index value. An index value of zero has the special function of request-
ing language 1Ds, while other index values request strings that may contain
any text.

wLANGID|0...n]. Used in string descriptor 0 only. String descriptor 0 con-
tains one or more 16-bit language ID codes that indicate the languages that
the strings are available in. The code for English is 0009h, and the subcode
for U.S. English is 0004h. These are likely to be the only codes supported by
an operating system. The wLANGID value must be valid for any of the
other strings to be valid. Devices that return no string descriptors must not
return an array of language IDs. The USB-IF’s web site has a list of defined
USB language IDs.

bString. For values 1 and higher, the String field contains a Unicode string.
Unicode uses 16 bits to represent each character. With a few exceptions,

USB Complete

Enumeration: How the Host Learns about Devices

Table 4-11: A string descriptor has three or more fields.

Offset Field Size Description
(decimal) (bytes)
0 bLength 1 Descriptor size in bytes
1 bDescriptorType 1 The constant String (03h)
2 bSTRING or varies |For string descriptor O, an array of 1 or more Lan-
wLANGID guage Identifier codes. For other string descrip-
tors, a Unicode string.

ANSI character codes 00h through 7Fh correspond to Unicode values
0000h through 007Fh. For example, a product string for a product called
“Gizmo” would contain five 16-bit Unicode values that represent the char-
acters in the product name: 0047 0069 007A 006D 00GE The strings are

not null-terminated.

Other Standard Descriptors

The USB 2.0 specification lists three additional descriptor codes for
interface_power, OTG, and debug descriptors.

The interface_power descriptor is defined in a proposed Interface Power
Management specification to enable interfaces to manage their power con-
sumption individually. The specification was proposed by Microsoft in
1998 but hasn’t been approved or implemented. The document describing
this descriptor’s structure and use is USB Feature Specification: Interface
Power Management.

The OTG descriptor is required for devices that support On-The-Go’s Host
Negotiation Protocol (HNP) or Session Request Protocol (SRP). The
descriptor indicates the supported protocols. Chapter 20 has more about
this descriptor.

The debug descriptor is defined in a proposed specification for USB2
Debug Devices. A debug device connects to the optional debug port defined
in the EHCI specification for high-speed host controllers. The debug port
and device are intended to replace the RS-232 port that PCs have long used
for debugging purposes.

USB Complete 113

Chapter 4

The Microsoft OS Descriptor

Microsoft has defined its own Microsoft OS descriptor for use with devices
in vendor-defined classes. The descriptor is intended to assist in providing
Windows-specific data such as icons and registry settings.

The descriptor consists of a special String descriptor and one or more
Microsoft OS feature descriptors. The String descriptor must have an index
of EEh and contains an embedded signature. Windows XP SP1 and later
request this string descriptor on first attachment. A device that doesn’t sup-
port this descriptor should return a STALL.

If a device contains a Microsoft OS String descriptor, Windows requests
additional Microsoft-specific descriptors. Future editions of the Windows
DDK will have more documentation about these descriptors.

Descriptors in 2.0-compliant Devices

If you're upgrading a 1.x-complaint device to 2.0, what changes are required
in the descriptors? In a dual-speed device, can you detect whether a device is
using full or high speed by reading its descriptors? This section answers these
questions.

Making 1.x Descriptors 2.0-compliant

114

Table 4-12 lists the descriptor fields whose contents may require changes to
enable a 1.x device to comply with the USB 2.0 specification. For all except
some devices that have isochronous endpoints, the one and only required

change is this: in the device descriptor, the bcdUSB field must be 0200h.

As Chapter 3 explained, a USB 2.0 device’s default interface(s) must request
no isochronous bandwidth. And because the default interface is of no use
for transferring isochronous data, a device that wants to do isochronous
transfers must support at least one alternate interface setting, and the alter-
nate interface descriptor will have at least one subordinate endpoint descrip-
tor. Some 1.x devices meet this requirement already.

USB Complete

Enumeration: How the Host Learns about Devices

Table 4-12: The descriptors in a 1.x-compliant device require very few changes
to comply with USB 2.0.

Descriptor Field Change
Device bcdUSB Set to 0200h.
Endpoint wMaxPacketSize |Isochronous only: must be O in the default configuration.

The USB 2.0 specification also adds two new descriptors and functions for
bits in existing fields, but the new descriptors are used only in dual-speed
devices and the other descriptors are backwards compatible with 1.x.

Full-speed isochronous endpoints have a few new, optional abilities. The
endpoint descriptor can specify synchronization and usage types (bmAt-
tributes field), and the interval can be greater than 1 millisecond (bInterval
field). In 1.x descriptors, these bits default to 0 (no synchronization) and 1
(one millisecond).

When selecting blnterval values for interrupt and isochronous endpoints,
don’t forget that the relation between blnterval and the interval time will
vary depending on the transfer type and speed. For low- and full-speed
interrupt endpoints, the interval equals blnterval in milliseconds. For
full-speed isochronous endpoints, the interval equals 2°™"*" in millisec-
onds. For high-speed interrupt and isochronous endpoints, the interval
equals 2°"™"" in units of 125 microseconds. Note that if blnterval = 1, the
full-speed interval is 1 millisecond in both USB 1.x and USB 2.0. So a 1.x
isochronous endpoint, which must have blnterval = 1, requires no changes

to comply with USB 2.0.

If you upgrade a full-speed device to support high speed as well, the device
needs a device_qualifier descriptor, an other_speed_configuration descrip-
tor, and a set of descriptors for the high-speed configuration. Any interrupt
endpoints in the default interface must have a maximum packet size of 64 or
less. A USB 2.0 device that supports only low speed or only full speed must
return STALL in response to requests for the device_qualifier and
other_speed_configuration descriptors.

USB Complete 115

Chapter 4

Detecting the Speed of a Dual-Speed Device

116

A high-speed device must respond to enumeration requests at full speed,
and the device may also be completely functional at full speed. As Chapter 1
explained, a high-speed-capable device must use full speed if it has a 1.x host
or if there is a 1.x hub between the host and device. Applications and device
drivers normally don’t need to know which speed a dual-speed device is
using because all of the speed-related details are handled at a lower level.
Windows provides no straightforward way to learn a device’s speed. But if a
host application wants to know, there are a few techniques that can detect a
the bus speed for many devices.

If a device has a bulk endpoint, you can learn the current speed by examin-
ing the endpoint descriptor in the active configuration. The wMaxPacket-
Size field must be 512 in a high-speed device and can’t be 512 in a full-speed
device. If there is no bulk endpoint, the wMaxPacketSize of an interrupt or
isochronous endpoint provides speed information if the endpoint uses a
maximum packet size available only at high speed. For an interrupt end-
point, a wMaxPacketSize greater than 64 indicates high speed. If the wMax-
PacketSize is 64 or less, the device may be using full or high speed. For
isochronous endpoints, a wMaxPacketSize of 1024 indicates high speed. If
wMaxPacketSize is 1023 or less, the device may be using full or high speed.

If you're writing the device firmware, you can provide speed information in
the optional strings indexed by the configuration and
other_speed_configuration descriptors. For example, the string indexed by
the configuration descriptor might contain the text “high speed,” and the
string indexed by the other_speed_configuration descriptor might contain
the text “full speed.” Applications can then read the configuration string to
learn the current speed.

The USBView application in the Windows DDK shows how applications

can read descriptors.

USB Complete

